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ABSTRACT
Runtime data of software systems is often of multivariate nature,
describing different aspects of performance among other character-
istics, and evolves along different versions or changes depending
on the execution context. This poses a challenge for visualizations,
which are typically only two- or three-dimensional. Using dimen-
sionality reduction, we project the multivariate runtime data to
2D and visualize the result in a scatter plot. To show changes over
time, we apply the projection to multiple timestamps and connect
temporally adjacent points to form trajectories. This allows for
cluster and outlier detection, analysis of co-evolution, and finding
temporal patterns. While projected temporal trajectories have been
applied to other domains before, we use it to visualize software
evolution and execution context changes as evolution paths. We
experiment with and report results of two application examples:
(I) the runtime evolution along different versions of components
from the Apache Commons project, and (II) a benchmark suite from
scientific visualization comparing different rendering techniques
along camera paths.
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1 INTRODUCTION
Runtime characteristics and performance of a software system can
be described by different metrics: time it took to execute a piece of
code, invocation counts, memory and energy consumption, idle and
waiting times, and manymore. Usually, it is not enough to represent
the behavior of the system along one metric only, but multiple ones
need to be shown to provide a rich picture. Visualizingmanymetrics
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at once gets more challenging with the number of recorded metrics
and finer granularity of recording (e.g., system vs. method level). A
viable solution can be to transform the data first and project it from
a space with an arbitrary number of dimensions (one per recorded
metric) to a visualizable two- or three-dimensional space (Figure 1,
left). Though simplifying, this can preserve similarities and outliers
regarding the behavior of visualized software entities.

When considering, however, that the dynamic behavior of a soft-
ware also alters with every change of code and execution in a dif-
ferent setup, the problem gets more challenging again. Connecting
the metrics along a temporal dimension, this yields a multivariate
time series, which can be described as an evolution path through the
multidimensional space. After projection, it can be visualized as a
trajectory within the visualized sets of data points (Figure 1, right).
Different types of trajectory will allow identifying, for example,
substantial changes in behavior, clusters of co-evolution, trends of
improvement and regression, as well as stable behavior.

In this paper, we explore the potential of projection-based multi-
variate time series visualizations for understanding evolutionary
changes in runtime behavior. Using projected evolution paths, it
captures the variety of runtime statistics through dimensionality re-
duction (DR) and visualizes changing behavior as lines connecting
the points of a scatter plot. While similar visualization approaches
have been used in other domains already [5], we are not aware
of any application to software engineering data. We combine this
approach with different color mappings and complement it with
parallel coordinates plots (PCP), which help us understand details
of a selection of points. Visual patterns appear—similar to those
described by previous works [2, 5]—and guide the identification of
relevant insights. We demonstrate the usefulness of the approach
with results from two applications, the evolving behavior of method-
level code entities in a software project and the changing perfor-
mance of rendering techniques along camera paths. While these
results are promising already, we only see the work as a first step
towards a full-fledged visual analytics solution.

The prototype is implemented as a web-based tool and available
online: https://vis-uni-bamberg.github.io/evolution-paths/

2 RELATEDWORK
Dimensionality reduction is a standard technique to project multi-
variate data to two dimensions for visualization in a scatter plot. If
applied to time-dependent multivariate data, connecting the tempo-
rally adjacent points in the projection yields imaginary trajectories,
often called paths. TimeCluster [1] uses a combination of deep learn-
ing and dimensionality reduction to visualize multivariate time
series from biology and medicine as paths. TimeSeriesPaths [3]
uses Principal Component Analysis (PCA) as the main reduction
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XmlStreamReader v1.0.0 0.34%12.1 ms0.23 mb72 LoC

Execute code Record metrics

XmlStreamReader v1.0.0 0.34%12.1 ms0.23 mb72 LoC

XmlStreamReader v1.0.1 0.64%14.1 ms0.33 mb74 LoC

XmlStreamReader v1.0.2 0.44%13.1 ms0.43 mb78 LoC

Repeat for multiple versions

XmlStreamReader v1.0.0 y: 1.3x: 1.1

XmlStreamReader v1.0.1 y: 1.0x: 2.0

XmlStreamReader v1.0.2 y: 2.0x: 2.0

Reduce to 2D using DR

Pre-processing step Interactive visualization with
user-defined filters and colors

Visualize

Visualize as sca�er plot
and connect versions to
form evolution paths

Optional: hide points
to show only paths

Figure 1:We consider the evolution of high-dimensional performance data of software artifacts and reduce themultidimensional
vectors containing the recorded metrics down to two dimensions. In the resulting scatter plot, we connect adjacent software
versions to form temporal trajectories, that we call evolution paths.

technique to project long and periodic time series for visual cluster
analysis. Time Curves [2] finds patterns in the path of a single time
series, that are projected using Multidimensional Scaling (MDS).
Recently, ProjectionPathExplorer [5] uses t-Distributed Stochastic
Neighbor Embedding (t-SNE) as well as Uniform Manifold Approx-
imation and Projection (UMAP) [9] in an interactive visual analyt-
ics application for path exploration. It is used to analyze datasets
from domains such as puzzles, games, and artificial intelligence. In
the context of performance engineering, dimensionality reduction
(namely PCA), has already been used to identify outliers in load
testing data and aid analysts in comprehension [7, 8].

Our work builds on these methods for visualizing paths in mul-
tidimensional data spaces and adapts them for visualizing evolving
runtime behavior. In a similar software visualization context, UMAP
has also been used to project multivariate performance data [15].
This approach, however, does not consider the temporal dimension
during visualization of the projection result. Focusing only on a
small and specific set of performance and change metrics, evolving
performance changes can be presented in detail as a matrix [12]
or, aggregated on a high level, enriching commit messages [13].
Other approaches show evolving multivariate software metrics in a
context of image rendering techniques [14], or limited to a coarser
level of granularity and no behavior metrics [6, 11].

3 VISUALIZING EVOLUTION PATHS
In our approach, we collect evolving multivariate metrics on a po-
tentially fine level of granularity (e.g., for many software artifacts
or settings) and transform them through dimensionality reduction.

The results are visualized as a scatter plot, in which we connect con-
secutive points as paths (see Figure 2). We implemented a prototype
of this approach as a web-based application using D3.js1 and Vue.js2.
Besides the main visualization, the prototype also contains different
interactive controls for data-driven filtering of the data and offers
the user the ability to select multiple evolution paths by brush-
ing via mouse. Usage of color throughout the whole application
is user-defined and can be adapted to further the analysis process
(see Section 3.2). For the dimensionality reduction performed in a
pre-processing step, we use the Python implementation of UMAP
and AlignedUMAP from the umap-learn3 package. The projected
datasets and the source code of the web-application are available
on GitHub: https://github.com/vis-uni-bamberg/evolution-paths

The approach is open to diverse sets of multivariate data that
somehow describe the behavior of a software and change over time.
These can be mixtures of performance metrics and other dynamic or
static metrics. Moreover, metrics that characterize the evolution of
the software can be relevant to add, too. Since all metrics get fused,
they should provide characteristic profiles that matter for a cer-
tain analysis goal. For instance, mixing performance metrics with
metrics of code complexity can reveal clusters of similarly time-
consuming and complex routines, and whether these co-evolve
consistently. Likewise, the level of granularity of recording depends
on the specific analysis and use case—evolution can be described
regarding individual methods of a system or whole systems. Our ap-
proach generally targets to scale to at least a few hundred evolving

1https://d3js.org
2https://vuejs.org
3https://umap-learn.readthedocs.io/
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Filter PCP

Figure 2: Exemplary workflow to analyze evolution paths: after metric-based coloring and scaling of the paths, data-driven
filtering focuses the analysis on a few paths; the raw data of the selection can be inspected in the parallel coordinates plot of
the details-on-demand view.

software entities, each consisting of up to a few dozens of evolution
steps (timestamps).

3.1 Data Model and Transformation
Our data model builds upon previously established frameworks
for time series visualization and dimensionality-reduced time se-
ries [2, 5, 10]. Specifically, we use the notation proposed by Hinter-
reiter et al. [5]. A single evolution path 𝑃 = 𝑝1, . . . , 𝑝𝑛 is an ordered
set of time points. Evolution paths can be of differing lengths, e.g.,
when not all timestamps are present. Each time point 𝑝𝑖 = (𝑡𝑖 , 𝑠𝑖 )
consists of one timestamp 𝑡𝑖 ∈ R and one multivariate data point
𝑠𝑖 ∈ S. All data points have the same number of dimensions and con-
tain the same set of recorded metrics. To avoid outliers distorting
the distance calculation, we normalize the variables using the Ro-
bustScaler from the scikit-learn4 package. Through experiments,
we found Euclidean distance to be a good candidate for the distance
metric 𝑑 for our application examples. The embedding function 𝑓

depends on the application example: we use UMAP in its original
variant, as well as in the AlignedUMAP variant. Initial experiments
with other dimensionality reduction techniques (namely, PCA and
t-SNE, inspired by [5]) did not show as promising results. Only
UMAP was able to preserve the global structure and local detail
of the high-dimensional data in the projection. For visualization
purposes, we define the projection space to have exactly two dimen-
sions and configure UMAP to output one two-dimensional vector
for every time point 𝑝𝑖 . These two dimensions define the x and y
coordinates in the resulting scatter plot (see Figure 1).

Generally, UMAP is a popular state-of-the art technique for di-
mensionality reduction. The original technique has been extended
in the AlignedUMAP variant to project high-dimensional data with
a temporal dimension. AlignedUMAP projects multiple timestamps
at once and applies constraints to the position of temporally ad-
jacent points to not differ too much in the final projection. This
makes AlignedUMAP seem like a suitable candidate to project mul-
tivariate data with a temporal aspect, there is one caveat however:
the technique expects a relation mapping to identify points in all
timestamps and does not project points that occur in only one or
non-adjacent timestamps. Depending on the dataset, this affects
usability of the resulting projection.

4https://scikit-learn.org

Cluster Transition Outlier Oscillation Bundles Symmetry

Single path Multiple paths

Figure 3: Visual patterns of single and multiple evolution
paths.

3.2 Visual Encodings and Interactions
The main visualization of our approach is a scatter plot that con-
tains all time points of all paths. To visualize a single path 𝑃 , we
connect all projected consecutive time points 𝑝𝑖 via straight lines.
Each line segment between two temporally adjacent points can be
individually colored (see Figure 6, where path segments are colored
by timestamp). Users can also select a metric of the data point 𝑠𝑖
for scaling the line thickness of a path. To account for outliers dom-
inating the scales, we offer different types of scale transformations:
linear, squared, cubic, or logarithmic.

To analyze parts of interest more closely, a user can sub-select
paths by brushing or using the interactive metric-based filter com-
ponents: selecting top n paths by a metric or giving upper and lower
bounds for the range of each metric. Paths outside the current se-
lection are grayed out, to reduce visual clutter but still give context.
Selected paths can be further analyzed in a details-on-demand view
that features a parallel coordinates plot and a data table, showing
the raw data for each time point in the evolution path (see Figure 2
for an exemplary workflow).

3.3 Visual Patterns
Evolution paths in multivariate data might show characteristic and
recognizable visual patterns (see Figure 3). Bach et al. [2] describe
seven patterns for single paths, from which four show in our data
and are relevant to our application (Cluster, Transition, Outlier,
Oscillation). Hinterreiter et al. [5] extend this collection to include
patterns from multiple paths (Bundles, Symmetry).

TheCluster pattern describes a path (or a subsequence of a path)
where all points are located closely to each other in the projection.
Some clusters are split by a gap, forming new clusters of multiple
points on each side of it (Transition). A single point at the end
of a transition is an Outlier. Oscillation creates a typical zigzag

https://scikit-learn.org
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Figure 4: Outlier pattern observed in the Apache Commons
IO dataset, marked by a red rectangle. Evolution paths are
colored by invocation count.

pattern along a path. Regarding multiple paths, Bundles occur
when a group of paths shares visually similar segments in close
proximity. In case some segments share visual similarity, except for
translation and rotation, the Symmetry pattern can be observed.

4 RESULTS
We demonstrate our approach by describing exemplary exploration
scenarios for two datasets from different software-related domains:
software engineering and scientific visualization.

4.1 Software Engineering: Apache Commons
Projects

For the software engineering domain, we use the same dataset
as Tarner et al. [15]. It contains data collected from three Apache
Commons projects, from which we exemplarily analyze Apache
Commons IO5 in the following. The data contains a set of static and
dynamic metrics on method level. Static metrics (number of non-
commenting source statements, Cyclomatic Complexity Number,
and count of Javadoc comments) were collected with JavaNCSS6.
For measuring the dynamic metrics (self time, total time, and invo-
cation count) all unit tests were executed and data was recorded
via VisualVM7. Both sets of metrics were recorded for multiple
commits per project. The data consists of 703 evolution paths (𝑃 )
on method level recorded over 17 commits (𝑡𝑖 ). This yields 10,567
time points (𝑝𝑖 ) in total, each with six recorded metrics. We use
UMAP8 with a high number of neighbors for manifold construction
and optimized settings for distance and spread of the projection to
reduce overplotting (see Table 1).

Loading the dataset shows a projection that is dominated by the
Bundle pattern (see Figure 2). We start our exploratory analysis of
the data by using the Non-Commenting Source Statements (NCSS)
metric to color the path segments, revealing that most evolution
paths have a low number of NCSS (paths in red), and only a few
paths show high numbers. To focus the analysis on the previously
5https://commons.apache.org/proper/commons-io/
6http://www.kclee.de/clemens/java/javancss/
7https://visualvm.github.io/
8The dataset contains methods that are not available in all timestamps. Hence, as
discussed in Section 3, we use UMAP for dimensionality reduction.

Table 1: Hyperparameter settings used for UMAP.

Example Variant n_neighbors min_dist spread

SE UMAP 10001 1.0 5
SciVis AlignedUMAP2 25 1.0 5

11000 equals to roughly a tenth of the dataset.
2The alignment_window_size parameter of Aligned-
UMAP was set to 3.

highlighted methods and reduce visual clutter, we filter the dataset
to the top three methods by NCSS (second picture in Figure 2; the
rest of the paths are now grayed out). Two of the three methods
show theCluster pattern. Further inspection of the PCP reveals that
their evolution contains no significant changes, implying that these
large methods have stayed mostly unaltered in code and behavior.
The third method is different: the path shows twoClusters and one
Outlier. All connected by two Transitions. The PCP of the raw
data confirms the patterns. The method shows three distinguishable
groups of timestamps for the NCSS metric. Early timestamps in the
range of 52NCSS to 56NCSS (Cluster), timestamps from themiddle
of the dataset in range 48NCSS to 49NCSS (Cluster), and the last
two timestamps both at the lowest value of 42NCSS (Outlier),
a reduction of 25% from the top value—developers might have
refactored the code.

Outside the main Bundle, many isolated Clusters and Tran-
sitions or Outliers can be observed. The isolated Clusters are
methods that do not change their characteristics in the observed
timespan. The Outliers can be identified by singular long path
segments. The frequency of these elongated segments hints at a
lot of metric changes during a single evolution path’s lifetime. A
possible reason for this can be found when filtering the paths by
commit: two consecutive commits are missing from the dataset.
The evolution from 𝑡8 to 𝑡9 includes not one but three commits;
possibly leading to more code changes being covered by a single
timestamp.

Using a dynamic metric for coloring and scaling makes changes
in behavior of methods visible (see Figure 4). Two methods from the
XmlStreamReader class, for example, show anomalies for the last
timestamp. Methods getContentTypeEncoding and getContent-
TypeMime both have high invocation counts for the first seventeen
analyzed commits and drop to around 75% of that in the last two
timestamps. This is visible in Figure 4, where both show a Cluster
pattern with high invocation counts in the top and then transition
to lower values in the bottom (marked by the red rectangle). This
might relate to changed unit tests (selectedmethods being not called
as often). This insight could help a developer evaluate whether the
test coverage has changed and needs to be investigated.

4.2 Scientific Visualization: TRRojan
Benchmark Suite

Bruder et al. [4] published the TRRojan benchmark suite, which
contains performance measurements of different techniques for
particle rendering. The suite includes the systematic sampling of a
set of performance-influencing factors for several datasets. Each

https://commons.apache.org/proper/commons-io/
http://www.kclee.de/clemens/java/javancss/
https://visualvm.github.io/
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Figure 5: Droplet dataset, colored by device. Clusters have
been marked by borders for reference.

univariate data point in the suite contains a frames per second (fps)
value and is identified by its dataset, the rendering device, the cam-
era path and sampling point along the path, the viewport resolution,
and the used rendering technique.

For this application example, we focus on contrasting the used
rendering technique. Evaluating the runtime performance of dif-
ferent techniques is essential when choosing a suitable technique
for a given scenario or evaluating novel techniques. While the set
of rendering techniques provides multivariate runtime data, the
temporal dimension is provided through the camera paths. They
place the performance measurements into a logical context and
sequence of realistic usage. As an example for analysis, we use
the Droplet dataset from the TRRojan suite. This dataset contains
roughly 80k particles, which form three droplets of a liquid. The
particles are rendered as spherical glyphs. To construct a multivari-
ate vector with one dimension per rendering as a data point 𝑠𝑖 from
the univariate data, we aggregate the data points across devices and
resolutions at each sampled camera position of each camera path.
Temporal order 𝑡𝑖 of the time points 𝑝𝑖 = (𝑡𝑖 , 𝑠𝑖 ) is given by the
movement of the camera through the scene. In addition to the five
compared rendering techniques, the data contains eleven camera
paths (each sampled at eleven positions), six rendering devices, and
three viewport resolutions. This yields 198 evolution paths in total.
For projection, we use AlignedUMAP (see Table 1 for details on
the used parameters). We consider the last three and next three
timestamps for embedding with the AlignedUMAP variant.

The initial visualization of the dataset shows two clusters and a
sparsely populated area between them. To start the exploration, we
experiment with different metrics to drive the coloring of the plot.
We find that coloring by rendering device further separates the
clusters into four distinct groups (see Figure 5). All evolution paths
in cluster A were rendered using a Radeon (TM) RX 480 Graphics
GPU, clusterB only uses a Radeon Vega Frontier EditionGPU, cluster
CNVIDIA Quadro M6000 24GBGPU, and clusterD contains all other
GPUs (NVIDIA TITAN Xp, NVIDIA TITAN X (Pascal), and NVIDIA
GeForce GTX 1080 Ti). Further investigation of the area between

Figure 6: The Droplet dataset, colored by timestamp. Selected
evolution paths show symmetric pairs, and a bundle of seg-
ments leading to an outlier (marked by purple rectangle).

clusters A, B, and C reveals that it is dominated by the Transition
and Outlier patterns. Closer examination of the evolution paths in
the details-on-demand view confirms that the time points in that
region exhibit unusual behavior for at least one of the five rendering
techniques. In this selection of evolution paths, four paths stand
out because of their geometric characteristics (see Figure 6). All
four of them converge in their last timestamp at a similar region
(highlighted in purple rectangle) in projected space (Bundle), while
showing different behavior for prior timestamps. The four paths
can be divided into two pairs of two, based on path characteristics
in earlier timestamps (Symmetry). While not being completely
symmetric, the two paths of each pair share general similarity in
these timestamps. The details-on-demand confirms: the two pairs
differ in rendering device used (one is of cluster B, one of cluster C
in Figure 5) and camera path (diagonal y and diagonal z), while all of
them were rendered in 2048 × 2048 px resolution. Last timestamps
show a significant drop in fps for all rendering techniques, with the
Screen-aligned quad technique showing the largest drop from its
usual range of 1000 fps to 5000 fps down to 6 fps.

This insight can be a starting point for the developer of the tech-
niques for further investigation into why all rendering techniques
perform poorly for the last camera configuration of the diagonal
y and diagonal z camera paths, with a focus on the Screen-aligned
quad technique. A possible explanation for the difference in per-
formance is that, in the last steps of these paths, the camera gets
close to the spherical glyphs of the rendered particles. Looking at
the rendered result, we can confirm that the Screen-aligned quad
technique shows different clipping behavior, than the rest of the
techniques, resulting in more glyphs being drawn on screen. Fur-
ther investigating the source code of this technique, it becomes
apparent that it generates sprites for the back faces of the glyphs,
increasing rendering time by creating unnecessary draw calls.

5 DISCUSSION AND FUTUREWORK
In this paper, we presented first steps towards visualizing the evo-
lution of a software system’s multivariate runtime characteristics
using dimensionality reduction techniques. By connecting the pro-
jected points, they form evolution paths. To showcase applicability,
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we demonstrated the idea in the context of software engineering
and scientific visualization. With this, we have, however, only veri-
fied the potential and general applicability of the idea, but not yet
investigated any of its applications in detail. Specifically, it would be
necessary to connect the visual patterns we observed to actionable
insights for software engineers. Specific use cases (e.g., identify-
ing performance regressions) likely require tailored settings and
encodings.

Our approach already includes basic brushing-and-linking func-
tionalities in combination with a parallel coordinates plot for a
details-on-demand view. Furthermore, data-driven filtering capabil-
ities have also been added. However, for more efficiently perform-
ing analyses at a deeper level, we suggest extending our approach
into a full-fledged visual analytics system. This proposed system
could use custom tailored visualizations for the specific application
(e.g., source code view and code diffs for code-related analyses)
and advanced interactions (e.g., interactive bundle selection). Vi-
sual summaries of selected paths or groups of paths would further
support reasoning, and enabling automatic similarity search for
evolution paths could help in finding co-evolving software entities
in the dataset. Adding these extensions to the proposed system,
would allow for deeper analysis inside the system without the need
to leave it (which was still needed to explain the findings in Sec-
tion 4.2). A limitation of the current approach is that dimensionality
reduction is done in a pre-processing step and thus not modifiable
during an analysis session.

Another promising direction is applying the approach to other
software-related scenarios. For example, when analyzing multivari-
ate performance data of complex systems under different loads, the
evolution paths can uncover unexpected anomalies. Also, it could
help observe if state changes in modern single-page web applica-
tion frameworks reflect alike in changes in the execution behavior
of the frontend.
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