
Spike – A code editor plugin highlighting
fine-grained changes

Ronald Escobar
Exact Sciences and Engineering Research Center (CICEI)

Universidad Católica Boliviana “San Pablo”
Cochabamba, Bolivia

ronaldescobarj@gmail.com

Juan Pablo Sandoval Alcocer
Department of Computer Science, School of Engineering

Pontificia Universidad Católica de Chile
Santiago, Chile

juanpablo.sandoval@ing.puc.cl

Hagen Tarner
University of Duisburg-Essen

Essen, Germany
hagen.tarner@paluno.uni-due.de

Fabian Beck
University of Bamberg
Bamberg, Germany

fabian.beck@uni-bamberg.de

Alexandre Bergel
RelationalAI
Switzerland

https://bergel.eu

Abstract—Information about source code changes is important
for many software development activities. As such, modern IDEs,
including, IntelliJ IDEA and Visual Studio Code, show visual clues
within the code editor that highlight lines that have been changed
since the last synchronization with the code repository. However,
the granularity of the change information is limited to a line
level, showing mainly a small colored icon on the left side of the
lines that have been added, deleted, or modified.

This paper introduces Spike, a source code highlighting plugin
that uses the font color to visually encode fine-grained version
difference information within the code editor. In contrast to previ-
ously mentioned tools, Spike can highlight insertions, deletions,
updates, and refactorings all in a same line. Our plugin also
enriches the source code with small icons that allow retrieving
detailed information about a given code change. We perform an
exploratory user study with five professional software engineers.
Our results show that our approach is able to assist practitioners
with complex comprehension tasks about software history within
the code editor.

Index Terms—Code highlighting; software evolution; software
visualization

Artifact: https://doi.org/10.5281/zenodo.7026727

I. INTRODUCTION

Syntax highlighting is a common feature of source code
editors. It typically applies predefined font colors to the code
to provide visual cues about syntax, for instance, keywords,
control structures, constants, and literals. The underlining goal
of traditional syntax highlighting is to help distinguish various
language elements and to ease program comprehension. How-
ever, a recent study has shown that there is no evidence that
standard syntax highlighting improves developers’ abilities to
comprehend source code [1].

We argue that an alternative application of source code
highlighting is helping developers in analyzing code changes.
Analyzing source code changes is an important activity during
software development. It is known that developers frequently
refer to source code changes to better understand the code and
make choices while programming [2]. A study based on 217
developer interviews reveals that at least 61% of them review

Github
Diff Tool

IntelliJ
Editor

IntelliJ
+ Spike

Fig. 1. Source code change example in: GitHub, IntelliJ, and Spike

the code history a few times a day, and 85% consider that code
history is important in their development activities [2]. Among
the questions that developers frequently ask themselves when
programming are When, and how this code was changed or
inserted?, What recent changes were made?, and What else
changed when this code was inserted or changed? [3].

Traditional source code difference approaches typically
display both versions of the modified lines, duplicating the
information. For instance, Figure 1 gives an example of a code
modification in the unified GitHub code difference tool. This
modification involves a renaming of a variable and insertion
of a line. These changes are shown by GitHub as one line
deletion (red lines) and two line additions (green lines). IntelliJ
IDEA (similar as other editors like Visual Studio Code) flag the
modified lines by adding a color on the left on the side-bar,
with line-based details similar to the GitHub representation
available on demand. However, it is difficult to identify fine-
grained changes within a line, for instance, a simple variable
renaming.

This paper presents Spike, a change-based source code
highlighting mechanism to show fine-grained version differ-

mailto:ronaldescobarj@gmail.com
mailto:juanpablo.sandoval@ing.puc.cl
mailto:hagen.tarner@paluno.uni-due.de
mailto:fabian.beck@uni-bamberg.de
https://bergel.eu
https://doi.org/10.5281/zenodo.7026727


J
The color of the icon file in the file explorer indicates the amount of changes applied to that file on the latest commit.

Color indicates type of change

Abbreviation of change

No changes

Few changes (between 1 and 10)

Moderate changes (between 11 and 25)

Many changes (more than 25)

Amount of changes per file Type of change

Insertion change

Refactoring

Update change

Move change

Delete change

Changes summary

INS

Fig. 2. Example for change-based source code highlighting showing modifications in SQLSeverConnection.java from the project mssql-jdbc. The left
panel contains an enhanced file explorer: a color is assigned to each file icon according to the number of changes. The right panel shows the code editor with
a highlighting that reflects the changes from the previous version. Font colors are assigned according to the kind of change, and visual markers placed at the
end of each modified line give on-demand information about the change; texts inside the markers are acronyms of the kind of change.

ence information. Our proposed highlighting mechanism is
accompanied by a number of visual icons that help developers
obtain more information about a code change on demand. We
developed a prototype that enhances two main components
of IntelliJ IDEA, a popular Java editor. Figure 1 contrast our
solution to existing ones, and Figure 2 gives an overview of
the whole approach. Differently than IntelliJ Editor, Spike
highlights different kinds of changes within a line, including
additions, deletions, updates, and refactorings.

To assess the expressiveness and usability of our prototype,
we conducted an exploratory user study comparing our ap-
proach with the GitHub code difference tool. We asked five
professional software engineers to perform a code compre-
hension task involving large Git commits. Overall, engineers
performed equally well using the GitHub code difference tool
and our augmented editor. This indicates that our editor is
able to assist complex comprehension tasks, although it offers
significantly less exposed historical information.

II. RELATED WORK

Visualizations in the code. Since Seesoft [4] has suggested
visualizing software metrics as colored source code lines,
diverse approaches have proposed adding different types of
data into the code editor [5], for instance, showing data on
code smells [6], call graphs [7], memory usage [8], [9],
and software performance [10], [11]. In contrast, our work
adds information about code changes to the editor. In the
same direction, already Seesoft [4] as well as Harward et
al. [12], [13] visualize information related to software history,
for instance, source code age or developers that last edited a
corresponding line. I3 [14] adds change summaries as small

timelines on method level to the code. However, we are not
aware of an approach that uses visual augmentations to show
fine-grained version difference information in the code editor.

Visual code difference tools. Common source code difference
tools compare two code versions and either show the informa-
tion using a side-by-side or unified representation. Whereas,
usually, changes are only detected and visualized at line level,
only few tools visualize more fine-grained changes in a side-
by-side view, i.e., which code sections were modified, added or
deleted [15], [16], [17]. They also integrate this with timeline
views [15] and architectural diagrams [16]. Differently from
these tools, our approach only shows the current (newest)
version of the code and highlights code changes in situ in
the code editor based on a given previous version.

III. SPIKE: CHANGE-BASED CODE HIGHLIGHTING

Spike enhances two components of IntelliJ: the File Browser
and the Code Editor Panel.

A. File Browser

To easily spot which files contain changes, our first enhance-
ment targets establishing a file-color icon based on the number
of changes within a file. Figure 2 (left side) illustrates how the
color icons are displayed in the file browser panel. The files
are categorized based on a number of configurable thresholds.
By default, our implementation considers four categories with
the following thresholds: none – zero changes J , few changes
– between 1 and 10 J , moderate changes – between 11 and
25 J , and many changes – more than 25 J . We consider
a change to be either an insertion, update, move, delete, or
refactoring within a file. Note that there is a letter inside each



icon to indicate the file type. The letter is assigned by IntelliJ,
for instance, J means Java file.

B. Code Editor Panel

We enhance the code editor panel by highlighting recent
code-change and adding visual markers to classify those
changes.

Color encoding. We support five change categories, each
represented by a font color: insertion ( ), update ( ), move
( ), delete ( ), and refactoring ( ). As an illustration,
Figure 2 shows a code section that involves three kinds of
changes. Code sections without modifications remain with the
default color font. The colors used by our tool are picked
from the IntelliJ IDEA color palette. If users change the color
palette, for instance, to a black background style, our tool
also uses compatible colors. For instance, consider Figure 3,
which shows a variety of source code changes done in the file
SQLServerConnection.java. Spike indicates that one variable
name was renamed and updated, two variables were updated,
and a new variable was declared.

Fig. 3. Example: variable renamig and constant updates

Icons & popups. We append an icon to each modified line.
Clicking on it provides details about the modification in a
popup. Icon colors have the same color as the font, and
inside each icon there is an abbreviated name of the type
of change. Popup labels give information about the change
and the commit that introduced the change: author username,
email, and commit date. Figure 4 gives details about a renamed
parameter refactoring, and it shows the previous name of the
parameter. In case of deleted lines, since these lines are not in
the current version (the code that developers are editing), we
show a red icon where the code was deleted. Clicking on this
icon reveals the deleted code.

C. Spike Implementation

We implemented Spike as a plug-in for the IntelliJ Java
Editor. We use IJM to detect the source code change at
AST level [18], and RefactoringMiner to identify the refac-
torings [19], [20]. Our prototype works with Git repositories.
It supports comparison of exactly two versions and, by default,
compares the current version with the previous one; however,
it also lets developers select an older version to compare with.

IV. USER STUDY

Five engineers from international companies volunteered to
participated in our study. They had between 1 and 3 years

Fig. 4. Popup example for renaming a method.

of professional experience in software development at out-
sourcing companies. All of them had at least one year of
experience in professionally developing software in Java and
using IntelliJ IDEA.

A. Design

Baseline. We used the GitHub code difference tool as the
baseline for comparison. However, unlike our plugin, GitHub
does not detect refactorings, which might introduce a bias in
favor of our approach. To minimize this bias, we installed the
RefactoringMiner plugin to the participants’ Google Chrome
browser. This Chrome extension highlights and summarizes
refactorings within the GitHub code difference tool.

Code under study. Based on a previous study [19], we
employed a data set of commits that contains a diverse kind
of refactorings and source code changes based on Refactor-
ingMiner. We then selected two commits that contain a great
variety not only of refactorings but also of line insertions,
deletions, and updates, one from the Apache Drill project and
the other from Apache Giraph.

Task & procedure. Each participant was requested to analyze
both commits and write a detailed commit message for them.
We did not provide them the original commit message to
avoid bias. Each commit was analyzed with a different tool:
Spike and the baseline. To balance any learning effect, we
randomized the commits and tools.

Data collection. During the study, participants were asked to
speak their thoughts and ideas out loud. After each commit, we
requested them to fill two forms: i) the system usability scale
form (SUS), and ii) the NASA Task Load Index (NASA-TLX).
At the end of the session, we asked the participants to list
advantages and disadvantages of our approach in comparison
to the baseline.

The implementation of Spike and the commits under study
are available online1.

B. Results

Usability & cognitive load. Table I shows the SUS and NASA-
TLX total scores for each participant. We measured the scores
as advised in the original description of the SUS form [21] and
NASA-TLX [22], respectively. P3, P4, P5 rated the usability
(SUS) of Spike with a better score than the GitHub difference
tool; P1 assigned a slightly better score to GitHub, and P2 the

1https://github.com/testFooBar71/highlight-code-plugin

https://github.com/testFooBar71/highlight-code-plugin


TABLE I
USABILITY AND COGNITIVE LOAD RESULTS

Session Time SUS NASA TLX
Spike GitHub Spike GitHub

P1 92 min 75 80 45.3 38
P2 86 min 57.5 57.5 45.7 42.3
P3 77 min 90 70 13.7 45.3
P4 89 min 70 47.5 60.3 65.7
P5 90 min 77.5 57.5 39 62

same score to both. Regarding the task load index (NASA-
TLX), P3, P4, P5 reported a lower workload perception using
our plugin in comparison to GitHub, and P1, P2 reported
a slightly higher workload perception using our plugin. All
participants commented that Spike is useful and easy to
understand. Overall, we observe that participants usability and
workload perceptions of both tools are in a similar range for
most participants, with two participants (P3, P5) ranking our
plugin clearly better across both scales.

File explorer. All participants first started expanding all
folders in the file browser and identified based on the color
encoding which files were changed. Since the projects under
analysis contained many files, participants used the “Expand
all” feature of IntelliJ IDEA in the file explorer. P1, P2, and
P3 followed a top-to-bottom approach to navigate the file
explorer. P5 followed a more random order. P4 preferred to
close folders with no modified files; it shows that P4 easily
distinguished files with modifications on the explorer. While,
in some cases, participants missed files with few changes while
scrolling, in most of the cases, all participants easily identified
files with modifications, stopping the scroll when they detected
a file with a different icon. P2 opened mostly files with many
modifications. P4 and P5 suggested the possibility to filter only
the files with modifications on the file explorer.

Code highlighting. Except for P1, who had a slight confusion
between blue from inserted code and white from not modified
code, no other participant had issues with the font color
encoding. Four participants did not comment on the color
encoding specifically; they quickly associated the blue color
with line insertions. However, P2 suggested using green for
inserted code and blue for updated code. Despite our prototype
had a minor bug in highlighting multiple inserted lines, all
participants were able to describe the code changes done in
all files and write a proper commit message.

Icons. P1 and P3 had confusions with the DEL icon. They
thought that the code on the line of the visual element was the
deleted code. This might be because traditional code difference
tools show deleted lines. But in our case, deleted lines are only
shown on demand when users click the DEL icon. P2 men-
tioned that basic acronyms (INS, UPD, MOV, DEL) are easy
to understand, but there are too many acronyms to remember;
P2 suggested having a single acronym for all refactorings.
However, P2 might not have realized remembering acronyms

is not necessary, as the full name of the modification is shown
on the popup.

Popup. This feature probably had the most positive reception
among all features. P2 and P5 said explicitly that the popup
was useful to review the code before the modifications. P5
mentioned that the popup was useful to see who and when a
change was made.

General feedback. Participants used adjectives such as good,
useful, and interesting to describe our plugin. P2 deemed the
idea to see previous code without git blame seems useful. P3
said he liked Spike a lot, and he would use it. P5 highlighted
the utility of showing refactorings.

Advantages. P1, P3, and P4 highlighted the fact that you do
not need to leave the IDE to see the changes. P2 said that
“you don’t even need to change the view within the IDE”. P5
also highlighted the better precision of the plugin for moves or
refactorings, which standard diff tools only detect as insertions
or eliminations. P1 and P3 also noted the visual expressiveness
of the tool as an advantage.

Disadvantages. P1 mentioned that all the information shown
can be heavy for the user. P2 and P3 mentioned that having
many visual elements on the editor could be invasive. P4
pointed out not having the split diff view as the only disadvan-
tage. P5 said that looking for modified files on the file explorer
could take a long time, and that could be a disadvantage. P1
and P2 said that it is difficult to adapt to this new highlighting,
and that they are used to the traditional highlighting.

Recommendations for improvement. P3 and P4 suggested
showing changes on the navigation sidebar of the editor. P4
and P5 suggested having the option to filter the modified files
on the file explorer.

C. Threats to Validity

Code under study. The commits picked might not be rep-
resentative or otherwise could have biased the results. To
minimize this threat, we selected commits containing a va-
riety of refactorings and code modifications of well-known
software projects, based on the RefactoringMiner study data
set [23]. We picked two commits with a comparable number
of changes.

Baseline. Although trying to find a comparable setup based
on GitHub and the RefactoringMiner plugin for GitHub, this
baseline might still introduce a bias. Participants might have
preferred other available tools for the task.

Tasks. The study only focused on analyzing commits, but not
how well participants perceive the change information while
writing code.

Reliability of results. Our findings are based on feedback
of five participant and their usability perceptions. Hence,
quantitative results can only be considered preliminary, while
qualitative findings might already be more reliable.



V. CONCLUSION AND FUTURE WORK

This paper proposes Spike as an unobtrusive extension
of the source code editor to obtain fine-grained historical
information. In an exploratory study, practitioners positively
perceived our plugin and rated it comparable or better to using
the GitHub code difference tool. Hence, our approach provides
a new and useful option for analyzing code difference, one that
fully integrates with the coding environment.

As future work, we plan to perform a controlled experiment
to understand, in contrast to traditional code comparison tools,
how and how well our prototype help developers to analyze
source code changes.

ACKNOWLEDGMENTS

Juan Pablo Sandoval Alcocer thanks ANID FONDE-
CYT Iniciación Folio 11220885 for supporting this article.
Alexandre Bergel thanks ANID/FONDECYT (regular project
1200067). This work has also been funded by Deutsche
Forschungsgemeinschaft (DFG) as part of research grant
288909335.

REFERENCES

[1] C. Hannebauer, M. Hesenius, and V. Gruhn, “Does Syntax Highlighting
Help Programming Novices?” Empirical Software Engineering, vol. 23,
no. 5, pp. 2795–2828, Oct. 2018.

[2] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software History
Under the Lens: A Study on Why and How Developers Examine It,”
in 2015 IEEE International Conference on Software Maintenance and
Evolution. Bremen, Germany: IEEE, Sep. 2015, pp. 1–10.

[3] T. D. LaToza and B. A. Myers, “Developers Ask Reachability Ques-
tions,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, vol. 1. Cape Town, South Africa: ACM Press,
2010, p. 185.

[4] S. Eick, J. Steffen, and E. Sumner, “Seesoft – A Tool for Visualizing
Line Oriented Software Statistics,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 957–968, Nov./1992.

[5] M. Sulı́r, M. Bačı́ková, S. Chodarev, and J. Porubän, “Visual Augmen-
tation of Source Code Editors: A Systematic Mapping Study,” Journal
of Visual Languages & Computing, vol. 49, pp. 46–59, Dec. 2018.

[6] E. Murphy-Hill and A. P. Black, “An Interactive Ambient Visualization
for Code Smells,” in Proceedings of the 5th International Symposium
on Software Visualization. Salt Lake City, Utah, USA: ACM Press,
2010, p. 5.

[7] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers, “Stack-
splorer: Call Graph Navigation Helps Increasing Code Maintenance
Efficiency,” in Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology. Santa Barbara, California, USA:
ACM Press, 2011, p. 217.

[11] S. Baltes, O. Moseler, F. Beck, and S. Diehl, “Navigate, Understand,
Communicate: How Developers Locate Performance Bugs,” in 2015
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. Beijing, China: IEEE, Oct. 2015, pp. 1–10.

[8] D. Rothlisberger, M. Harry, A. Villazon, D. Ansaloni, W. Binder,
O. Nierstrasz, and P. Moret, “Augmenting Static Source Views in Ides
with Dynamic Metrics,” in 2009 IEEE International Conference on
Software Maintenance. Edmonton, AB, Canada: IEEE, Sep. 2009, pp.
253–262.

[9] D. Rothlisberger, M. Harry, W. Binder, P. Moret, D. Ansaloni, A. Vil-
lazon, and O. Nierstrasz, “Exploiting Dynamic Information in IDEs
Improves Speed and Correctness of Software Maintenance Tasks,” IEEE
Transactions on Software Engineering, vol. 38, no. 3, pp. 579–591, May
2012.

[10] F. Beck, O. Moseler, S. Diehl, and G. D. Rey, “In Situ Understanding
of Performance Bottlenecks Through Visually Augmented Code,” in
2013 21st International Conference on Program Comprehension. San
Francisco, CA, USA: IEEE, May 2013, pp. 63–72.

[12] M. Harward, “CoderChrome: Augmenting Source Code with Software
Metrics,” Master’s thesis, University of Canterbury, New Zealand, 2009.

[13] M. Harward, W. Irwin, and N. Churcher, “In Situ Software Visual-
isation,” in 2010 21st Australian Software Engineering Conference.
Aukland, New Zealand: IEEE, 2010, pp. 171–180.

[14] F. Beck, B. Dit, J. Velasco-Madden, D. Weiskopf, and D. Poshyvanyk,
“Rethinking User Interfaces for Feature Location,” in 2015 IEEE 23rd
International Conference on Program Comprehension. Florence, Italy:
IEEE, May 2015, pp. 151–162.

[15] Y. Yoon, B. A. Myers, and S. Koo, “Visualization of Fine-Grained Code
Change History,” in 2013 IEEE Symposium on Visual Languages and
Human Centric Computing. San Jose, CA, USA: IEEE, Sep. 2013, pp.
119–126.

[16] V. Uquillas Gómez, S. Ducasse, and T. D’Hondt, “Visually Characteriz-
ing Source Code Changes,” Science of Computer Programming, vol. 98,
pp. 376–393, Feb. 2015.

[17] V. Frick, C. Wedenig, and M. Pinzger, “DiffViz: A Diff Algorithm Inde-
pendent Visualization Tool for Edit Scripts,” in 2018 IEEE International
Conference on Software Maintenance and Evolution. Madrid: IEEE,
Sep. 2018, pp. 705–709.

[18] V. Frick, T. Grassauer, F. Beck, and M. Pinzger, “Generating Accurate
and Compact Edit Scripts Using Tree Differencing,” in 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution. Madrid:
IEEE, Sep. 2018, pp. 264–274.

[19] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and Efficient Refactoring Detection in Commit History,” in
Proceedings of the 40th International Conference on Software Engineer-
ing. Gothenburg Sweden: ACM, May 2018, pp. 483–494.

[20] N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930–950, Mar.
2022.

[21] J. Brooke, “SUS: A quick and dirty usability scale,” Usability Evaluation
in Industry, vol. 189, 1996.

[22] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” in Human Mental
Workload, ser. Advances in Psychology, P. A. Hancock and N. Meshkati,
Eds. North-Holland, 1988, vol. 52, pp. 139–183. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166411508623869

[23] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of github contributors,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016, 2016, p. 858–870.

https://www.sciencedirect.com/science/article/pii/S0166411508623869

	Introduction
	Related Work
	Spike: Change-based Code Highlighting
	File Browser
	Code Editor Panel
	Spike Implementation

	User Study
	Design
	Results
	Threats to Validity

	Conclusion and Future Work
	References

